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hlHOT8~-COO6~aIOTCR pe3yJlbTaTbI 3H3JIMTHYCCKOrO H 3KCHCpRMCHT3JIbHOrO HCCJIC~OB3- 
HHH M3CCOHCpCHOC3 B HOrp3HHYHOM CJIOC 3XICTOBH3KOfi HCHbIOTOHOBCKOM HOiAKOCTH. 

B HepBot HacTM H~MB~AHTCH pe3ynbTaTn aHaHHTHHecKor0 HccnegoBaHHH MacconepeHoca 
HpO~OJlbHO-O6T3K3CMO~ HJHICTHHLJ, OIlWCbIBaeTCH TaKH(e MeTOnHKa 3KCllepHMeHTaJlbHOrO 

I4ccne~oBaHHH. BanaraloTm pe3ynbTaTbz nccne~osamin ~m#4yami, 0nTmecKHx K peono- 
rmecKkfx CBO~CTB 3neKTpoxeMmloMkiHec~HpyIorrlero pacTBopa (3XJI) c AO6aBKaMIi Na- 

HMLJ. 

NOMENCLATURE 

rectangular co-ordinates of a boun- 

dary layer ; 
rheological parameters of a con- 

stitutive formula ; 
shear stress ; 
deviators of tensors stress and de- 

formation rates ; 
shear viscosity of steady-state flow ; 
similarity variable ; 
stream function ; 
delay period ; 
relaxation period ; 
shear modulus ; 
consistent rheological variables ; 
density; 

velocity vector components along 

co-ordinate axes x and y, respec- 

tively ; 
length of passive section ; 
velocity of incoming flow ; 
local value of a diffusion flux at 

electrode surface : 
formparameter of the dynamic 

boundary layer ; 

Pew, 

Re, 

Subscripts 

En, 

0, 

W, 

311 

voltage difference between anode 

and solution ; 
light transmission coefficient ; 
phenomenological transfer coeffr- 

cients ; 
active agent bulk concentration 

(H202) in electrolyte; 

cylinder diameter ; 

= $-, local Nusselt number (mass 
0 

transfer) ; 
ux 

= $--, local P&let number (mass 

transfer); 
7J2 -n.xn 

= 00 generalized Reynolds 
k/p ’ 

number. 

referred to mass transfer ; 
limiting value ; 
referred to bulk phase outside a 

boundary layer; 

referred to wall ; 
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X, dimension, according to which a 
number is composed. 

DURING the last years the interest in the 
problems of convective transfer in non-Newton- 
ian fluids has grown considerably. The interest 
in the transfer processes in moving non-linear 
viscous and elastic fluids is caused by the fact 
that such complex systems with more general 
laws of physical and mechanical behaviour 
may display many new phenomena. These may 
be not only purely mechanical (Weissenberg, 
Key, Merryngton’s effects) but also physical, 
due, for example, to turbulent substance transfer. 
Many new and sometimes unexpected properties 
of such systems (e.g. melts, concentrated polymer 
solutions) are conditioned by comparatively 
great time intervals of the order of seconds 
and more of the relaxation of the stress- 
deformation state and by memory effects. 
Thus, strictly speaking, hydrodynamics of the 
modern high altitude, high-speed vehicles should 
be based on the rheological concepts since 
atmospheric air at altitudes above 9 km has 
distinct viscoelastic properties [ 11. Against the 
background of numerous publications on rheo- 
dynamics and heat transfer in general liquid 
systems, the absence of theoretical and experi- 
mental works on mass transfer is specially 
noticeable. At the same time such problems are 
important not only in their practical but also in 
their theoretical applications, since diffusion in 
non-Newtonian disperse systems and polymer 
solutions has its specific features, which make 
it different from heat conduction. In particular, 
the diffusion coefficient of a polymer admixture 
in a low molecular medium is not only by 
some orders smaller than the thermal diffusivity 
of the same solution but also displays an ex- 
tremely strong and non-linear dependence upon 
concentration while the thermal diffusivity 
varies very weakly and linearly. Up to now the in- 
fluence of rheological characteristics of shear 
flow upon admixture convection in the external 
and internal problem is not sufficiently studied. 

The so-called power law for describing inter- 

nal friction is used in the majority of works on 
pure viscous non-Newtonian fluids. Conse- 
quently, such systems are based on the law of 
the Newtonian internal friction with some 
correction in the form of the empirical exponent 
n in the formula (modified Newton’s law) 

From the thermodynamics of irreversible pro- 
cesses it is known that the law of viscous Newton 
flow corresponds to the validity of the linear 
phenomenological Onsager laws. Work [2] 
presents the generalized relation between fluxes 
Ji and thermodynamic forces Xk, which is 
valid for current systems with different rheo- 
logical models 

Hence, for example, we have the well-known 
Oldroyd formula [3] which was proposed for 
describing visco-elastic fluid with zero yield 
stress (Lr) = -TV ; I$ = i, ; Li = p) 

Pik = p-LB& + /I, (gik - 7, (g). t3) 

Here Pik and iik are the deviators of the tensor 
stresses and the deformation rates, ,u, A,, z, are 
the material constants, q is the shear viscosity 
of the steady-state flow, &. is the delay period 
characterizing the rate of exponential decrease 
in shear velocity when shear stresses are taken 
off, r, is the stress relaxation period when shear 
flow is stopped instantaneously. These constants 
are determined by the viscosity of a continuous 
phase, bulk concentration and elasticity modulus 
of a disperse phase. The rheological law (3) has a 
physical meaning only when it satisfies the 
inequality 5,. > 1, > 0 and includes the classical 
model of a visco-elastic Maxwell fluid (A, = 0) 
as a particular case. 

The principal difference between laws (1) and 
(3) is that if in the first case the rheological 
system under the action of shear displays one 
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fundamental property, i.e. it approximates a 
pure viscous fluid obeying the modified New- 
tonian law, then in the second case the model is 
given properties of a Newtonian fluid and also 
of a non-ideal elastic solid (second and third 
terms in the right-hand side of formula (3) 
characterize the instantaneous and the delayed 
z, elasticity?). 

From the rheological point of view there is no 
principal difference between an elastic solid and 
fluid, the difference is only in the magnitudes 
of periods of stress relaxation and elastic 
recoil. In the first case the relaxation period of 
the shear stresses z, is large and in the second 
case is negligibly small in the usual time scale. 

The constitutive equation (3) is well con- 
firmed by experimental data on the flow of 
structured systems, emulsion type, high-polymer 
solutions and elastic particle suspensions. Elastic 
elements (drops, flexible macromolecules, etc) 
suspended in such a system are deformed under 
the action of shear stresses and accumulate 
energy of elastic deformations. According to 
[3] in fluid (3) in steady shear flow normal 
stresses must appear not equal one to the other. 
Non-zero differences of normal stresses along 
and across the stream lines lead to the Weissen- 
berg effect [4]. 

Thus, the Oldroyd law makes it possible to 
explain, although to a first approximation, new 
physical and mechanical effects which may be 
predicted on the basis of the classical Newtonian 
viscosity concept. Rheological systems of type 
(3) are not difficult to obtain by introducing 
polymer additives into a Newtonian fluid. In 
particular, we have used a fluid which is a solu- 
tion of sodium-carboxy-methylcellulose in water 
(Na-CMC). Elastic elements are formed in 
water by polymer macromolecules with addi- 
tional immobilization of the solution by 
“solvent” cells. Deformation of such an element 

T If the viscosity coefficient is large (p -+ m), we obtain 
the formula of Hooke’s law in shear Pi, = G(q*, i.e. 
7, = p/G where G is the shear modulus (see [Z]). 

under the influence of a velocity gradient is not 
instantaneous due to resistibility of a macro- 
molecule to a change in its shape. The time, 
during which a change occurs in the macro- 
molecule configuration is determined by the 
relaxation period and depends upon the sizes, 
shape and flexibility of the chain. The mechanical 
behaviour of such a solution should, in principle, 
be described by relations (2) and (3). 

Kotaka et al. [S] have studied viscoelasticity 
of Na-CMC solutions by means of the rotational 
instrument “paralleldisks” (“plate-plate”). Even 
for comparatively small shear rates of the order 
of 10 set- ‘, viscoelastic properties appear very 
effective. For shear velocities of the order of 
lo3 set- ’ the viscoelastic stresses P, become 
greater than the shear ones P,. The commen- 
surability of the quantities P, and P, is achieved 
more rapidly at small Na-CMC concentrations. 

In Ernst’s recent experiments [6] it has been 
found that in turbulent flow ofNa-CMC aqueous 
solutions in circular tubes at $ = (05 + 3.5) 
103 set- ’ the viscoelastic properties are strongly 
displayed at 0.1 per cent concentrations. 

For steady laminar shear flows where the 
longitudinal pressure gradients c?P,@x are small 
(plate in flat-parallel flow, translational motion 
in long constant cross-section channel), as it 
is known [7, 81, the velocity field and friction 
resistance are independent of viscoelastic 
properties and may be calculated on the basis 
of the so-called flow curve, in particular, by 
using equation (1). Where the values of i3P/dx 
change sharply along the flow surface (nozzles, 
diffusers, inlet sections of rectangular tubes 
and channels, flow past blunt bodies, etc.) one 
should expect an increasing role of the visco- 
elastic properties of a flowing medium in the 
general dynamic and energy flow balance. 

The present paper deals with the results of 
an analytical and experimental study of mass 
transfer in a boundary layer along a plate 
in longitudinal flow (Part I) and with the 
expe~mental investigation of mass transfer 
from a circular cylinder (Part II) to an elasto- 
viscous non-Newtonian fluid. 
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ANALYTICAL STUDY-FLAT PLATE The new abscissa x is now read along the stream 
IN LONGITUDINAL FLOW line il, = const. (from now on the subscript $ 

The initial system is fo~ulated as follows : will be omitted). The variable $ is above the 
wall ($ = 0). Equation (8) should be solved 

(4) for the following boundary conditions 

8C 
-=O at IG/=O 

(5) a+ 
(x < h,) (9a) 

(6) 
c=o St ii,=0 (x > hi,) Pb) 
C=C, at $=O (x = 0) (9c) 

uE+cC=a DE 
ax [ 1 JY c?y ay ’ 

(7) 

The velocity distribution defined by equations 
(4)--(6) is considered to be known. Work [5] 
contains it in the form of tables and charts. 
Equation (7) will be solved assuming that the 
diffusion kinetics process occurs in a region, 
i.e. under the boundary conditions of a limiting 
diffusion flux. Assume also that diffusion occurs 
not at the whole wetted surface but starts 
at some distance h, calculated from the leading 
edge of a plate. consequently, the section of a 
plate 0 6 x < h, is characterized by the equality 
j, = 0 (passive section of a plate). For all 
x > h, (active section) the condition C = 0 is 
valid. From physical considerations it is clear 
that the regime of the limiting flux at this 
section is established not immediately behind 
the passive section. At some portion of the 
active surface there will occur transition to 

C = Co at *-t 00. (9d) 

To combine the quantities u, x, $ we shall use 
the well known similar solutions of the dynamic 
problem for a plate [9] 

1 1 Iif! 
’ = yx 

u;--“p -3 1 M(U + 1) k 

= yx-‘+“j& 

U = Q2!0; 
dri 

$Zx*TJ A/I m ” “F(q); 

M= 
tJ%--“p 

c 1 n(n + 1) k 

(p)n- 1 f’“’ + FF” = () 

the limiting flux values and here diffusion mass 
transfer will be higher than the appropriate 
limiting one achieved at x % ho. This region 
will be called the stabilization region where 
tangential mass transfer makes a greater con- 
tribution to the full diffusion flux than to the 
region of the steady limiting regime. After 
changing from the physical co-ordinates x and 
y to the variables x and tj, equation (7) can 
be re-written as : 

(8) 

F(0) = F'(0) = 0 limF’(c0) = 1. 

The unknown relation $j) is found from the 
equalities 

u = 2 and a* 

fJJY v= -ax 
(12) 

which satisfy the continuity equation (5). 
As it is known, all liquids (especially high- 

viscous) are characterized by the condition 
Pr, * 1. The the diffusion boundary layer 
appears to be much thiner than the dynamic 
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one and occupies a narrow near-wall region. 
While finding the concentration field by equa- 
tion (8), not the whole velocity profile should 
be taken into account but only that part of 
it ‘which is “submerged” in the diffusion 
boundary layer. For this purpose, the one- 
parameter linear velocity family is normally used 

24 
- = Pl(& n) Y = 
urn 

where 

( ) au -kM& 
Pl = a = x 4=ox 

combining equations (10)-(U) we have the 
relation 

Equation (8) is now simplified 

Here 

1 

B = 2, Da+ Ut Mz’” + 1) 
m (16) 

Introduce new variables 

n+l 2n+l 

(= 2(2n+ 1) 
BX2(“f 1). 

’ cp = Jlcl 

As a result we come to a new notation 

ac i a2c 
-= -- 
at qap2 

C + C, at rp-rm 

‘+l &$+j 
2(2n + 1) 

and cp=O 

(14) 

(15) 

(17) 

(18) 

(19) 

c=o 1 n+l&%j at t>-.- 
22n+l O 

and cp = 0. (21) 

Following Meuman [lo], the solution of the 
limiting boundary-value problem is sought in 
terms of the variables < and cp for a semi- 
infinite plate without a passive section (ho = 0). 
Then, the boundary conditions are simplified as : 

c +co at cp+cc (22) 

c=o at cp=O (23) 

c=o at <=O; cp = 0. (24) 

The replacement of the variables 

0 = rp(9<)-+ (25) 

leads to the equation 

azc 
a+ 3w$=o. (26) 

The solution of equation (26) is 

C,ye-“‘d3, 

Clim = 0 
soeeL dA 
0 

= Co [t I(i)]- ’ $ eeA3 d;l. (27) 

The initial system is obviously invariant with 
respect to the group of transformations 5 + 
to (to = const). Choose 

The function 

C = C,[~T(~)]-‘%exp(-~3)dl; 

: 

(28) 
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satisfies equation (18) and the conditions (19t Here it is interesting to dwell upon two 
(21). In terms of the physical variables the important consequences of the solution obtained. 
solution has the form : Firstly, the influence of the passive section is 

CO at x < h, 

c(x’ ‘) = C& I(+)]- ’ r exp (- A3) d1 at x > h, 
0 

(29) 

The value of the diffusion flux density at the active section is determined by the relation 

j=D C 0 ZY ,=(I 

= co [; I-&] - l 

For n = 1 (Newtonian fluid) relations (29) and 
(30) automatically convert into Meuman’s solu- 
tion [lo]. 

The relation of real and limiting (he = 0) 
diffusion fluxes is expressed by a simple formula : 

2”il 

j$ = [l - (h;o)-l.lll]i. (31) 

Thus, the excess of the real flux j over jlim and 
the length of the stabilization region depend 
not only on the relation he/x but also on the 
non-Newtonian behaviour index n. 

As compared with Newtonian fluids, the 
pseudoplastic ones (n < 1) require a larger 
length x to achieve jlim The dilatant system 
(n > 1) exhibits a reverse tendency. The expo- 
nent of the relation ho/x varies from 3 (limiting 
pseudoplasticity n = 0) to 1 (extreme dilatancy 
n --+ co). For a fixed value of ho, on the abscissa 
where j and jlim differ between themselves by 
5 per cent for limiting pseudoplastic fluid 
x5% .E 10 ho, for Newtonian fluid xs% 2 5 h and 
for limiting dilatant system xs% g 3 ho. 

the greater, the lower is the value of the non- 
Newtonian behaviour index n. This is caused 
by the higher contribution of the tangential 
j-component to the cross mass flux. For great 
ho/L the cross-mass flux transferred over the 
whole active portion of a plate will differ 
considerably from jti,,, despite the fact that the 
process still proceeds in a diffusion region 
and the condition CIYEo = 0 is fulfilled. 

Secondly, the presence of a passive section 
may serve as a means for exerting deliberately 
influence upon convective mass transfer in a 
non-Newtonian fluid. New possibilities are 
created for optimal control of technological 
mass-transfer processes in the production and 
processing of polymers and plastics in a liquid 
state. 

The solution obtained is transformed into a 
dimensionless form 

Nu,, = o&z[rr(n + l)] ’ .’ “}’ 
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Let us determine the average values of j-fluxes 
on the portion x - h, 

s 3(n + 1) _-KG- 
h jdx = ZnAIAh, 3(nf1) 
X- 0 

ho 

X 
-- 

ho 
1 

(33) 

Here 

The formulae obtained contain the velocity 
field fo~parameter /.?1 being the only charac- 
teristic ~~enabie to direct measurement. 

The quantity 

fll(x, n) = T I I = a-?/Y 
)‘=o 

is the dynamic formparameter dependent on 
the longitudinal co-ordinate of the layer, the 
velocity distribution in the external potential 
flow and the rheological properties of the 
medium. 

In general, the quantities a should be de- 
termined from the solution of a non-linear 
system of the equations for a boundary layer 
in case of the arbitrary law of a change in 
external potential flow U(x) and of the pre- 
scribed equation of a rheological state. It is 
still very difficult to obtain a strict solution 
of this problem owing to great mathematical 
difficulties. Let us briefly describe a new method 
for calculating p1 similar to the Meksyn method 

c191. 
Solutions (ll)-(lZ) will be sought in the form 

of the McLoren expansion with increasing 
powers i.e. 

(35) 

Owing to the first two conditions (12) 

a, = a, = 0. (36) 

Moreover, by means of the consecutive differ- 
entiation (11) we obtain additional conditions 

F”‘(O) = F’V(O) = 0. (37) 

consequently, 

a3 = a4 = 0. (38) 

Substitution of series (35) into equation (11) 
allows all the coefficients a, to be expressed 
in terms of a2 = a. 

From (36) and (38) 

cc 

F(v) = c a3i+2 3i+2 
(3i+2)!’ ’ 

(39) 

i=O 

Present (11) as 

F”’ + ($“‘)I-“FF” = 0. (40) 

Substitution of series (39) into (40) and equating 
the coefficients of the same powers q give 

a5 = - a3-n 

a, = (21 - 10n)a5-2”. I (41) 

Consequently, 

F 
a3-n 

= $2 - --q5 

+ 
(21 - 1On) a5-Z” US + . . 

8! 
. . (42) 

We shall consider the quasi-linear equation 
(40) as a differential equation in terms of the 
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derivative F” which quickly decreases across 
the layer. The product 

(,“)I -“F = q(q) (43) 

is formally interpreted as some variable co- 
efficient, i.e. 

Then 

(F”), + q(q) F” = 0. 

F” = A, e-4 

(4) 

(45) 

F’ = Al je-“dq. (46) 
0 

Here A is the integration constant and 

(47) 

The quantity A, is found from the wall condi- 
tion 

Ai = F"(0) = U. 

To calculate 4(q), transform the integrand 

(F")l-" = 
a3-n 

a-Tq3+ 
lO(2 - n) + 1 

6! 

1 
l-n 00 x a5-2ny16 +... =zockqk (48) 

C 0 = a’-” 1 
c, =o 
c2 = 0 

C3= -+a 3-Zn 

c4 = 0 

c5 = 0 

c 
6 

=(I - n)PW - 4 + 11a5-3n 
6! 

Multiplication of equation (34) by (47) gives 

a2-n 

P=Tv2- 
l"(l - n, + l a4-2nq5 

5! 

+ 
[ll + (1 - n)(654 - 56On)] a6_3n$ 

8! 

Upon integration 

4-2n$j 

[li 
+- 

+ (1 - n)(654 - 560n)]a6-3nV9 

9! 

+ . . . . (51) 

Thus, to calculate F"(0, n) = a(n) the asymp- 
totic condition at the upper boundary of the 
layer should be satisfied in equation (46) 

F'=ame-@'dq= 1. 
d 

(52) 

Generally speaking, the power series (42) and 
(51) have a limited interval of convergence and 
therefore the upper limit in (52) should also be 
finite. However, in this case the calculation of 
the quadratures (45) and (52) is considerably 
simplified by the fact that the integrand has a 
stationary (saddle) point (q = 0) and quickly 
decreases away from it along the positive 
direction q (direction of steepest descent). Due 
to monotony and positivity of 4(q) the main 
contribution of the value of the integral (52) 
is formed in the vicinity of a stationary point by 
some first terms of the series c#+J). This very 
circumstance justifies the use of an infinite 
upper limit. In a general case of a non-similar 
boundary layer with a longitudinal pressure 
gradient, in Meksyn’s method Euler’s trans- 
formation is used which increases the series 
convergence interval (42) and (51) together 
with the method of steepest descent. 

Let us make the inversion of series (51) by 
means of the formula 
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cc 

?= c Am _ @fw+ 1) 
m+l ' 

(53) 
m=O 

In such a case 

A, = A, = 0 

A _ lO(1 - n) + 1 -* 
3- 

> (54) 
15 

A, = A, = 0 

A 
6 

= -4 + (1 - n)(186 - 140n) 

720 

From equalities (52)-(54) we obtain 

1 = 36a’ 

EXPERIMENTAL STUDY-DESCRIPTION OF A 
LIQUID SYSTEM 

The present method for studying convective 
mass transfer also allows observation of the 
flow past solid surfaces without introducing 
any disturbances into it. This method is based 
on electrochemiluminescence. 

If voltage is supplied to two electrodes sub- 
merged into electrochemiluminiscent solution, 
then there appears blue glow on the anode 
usually shaped as an investigated body. 

In [l l] it is shown that in laminar flow of 
electrochemiluminescent solution at a fixed 
voltage between the electrodes the brightness 
of the glow of different portions of the anode 
surface is directly proportional to the local 
intensity of mass transfer j/x of the active 

--p’ + l I-($) + 
-4 + (1 - n)(186 - 140n) 

720 
I-($ + . . . 1 . (55) 

Hence 
3 

lO(1 - n) +J + -4 + (1 - n)(186 - 140n) + I+n 
. . . 

45 1620 I- . (56) 

Figure 6 shows a comparison of the approxi- 
mate values of a(n) with their exact ones taken 
from [2]. The first approximation, based on the 
presence of only the first term in series (42) 
has an error of + 2 per cent near n = 1, achieving 
almost 100 per cent at 0 < n < 2. The second 
approximation gives an accuracy ( < 10 per cent) 
for all the values of the flow index n. The three- 
term series (42) ensures accuracy, on the average, 
of order of 1 per cent over the whole theoretic- 
ally possible range of the parameter n. In the 
most important range 0.5 < n < 1.5 the devia- 
tion from the exact values of “Q” does not 
exceed 0.2 per cent. 

electrolyte (H202) to a wetted anode surface. 
ECL-glow is excited in the region some light 
wavelengths in width which is adjacent to 
the anode surface, i.e. at a distance much 
smaller than the boundary layer thickness [12]. 
Thus, the ECL-methods are especially useful 
to study wall phenomena (solid and liquid 
interface, films, etc.). In definite ECL-regimes 
glow is observed in a moving medium, and 
the flow pattern is distinctly visualized at a 
distance from the wall in bulk (downstream 
region, traces, cavities, jets, eddy formation, 
etc.). 

The addition of a high-polymer into the 
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Newtonian ECL-system noticeably influences 
all the electrolyte properties (physical, mechani- 
cal and electrochemical). Even a small amount 
of macromolecules in solution changes its 
internal friction and diffusion sharply and non- 
linearly. At the same time the conditions of ion 
transport through such anomously viscous 
solution vary and the ECL-reaction takes 
place. We shall discuss this problem in more 
detail : 

(a) Voltage-current characteristic 

The curve in Fig. 1 shows the relationship 
of the current in external circuit to the applied 

i 

52 

Av 
FIG. 1. Current in the external circuit v. potential difference 

between anode and solution 
1-c cMC = 0.5 % : h, = 2.3 cm : U _ = 0.5 m/set; C,,,, = 

0.9 mljlit 
2-C& = 0%; h, = 0.7 cm; U, = 0.5 m/set: C,,+ = 

0.6, ml/lit 
3-CCMC = 0.25%; h, = 2.3 cm; U, = 0.17 m/set; 

C nPI = 0.9 ml/lit 

4-CcsIc = 1%; h, = 2.3 cm; U, = 0.17 m/set; 
C nIoz = 0.9 ml/lit 

5--CCMC = 0%; h, = 0; U, = 0.17 m/set; C,,,, = 0.6 
ml/lit. 

voltage difference. The almost linear dependence 
of both quantities upon each other is valid for 
small potential differences AK At large AI/ 
the current achieves some limiting values (the 
plateau in chart in Fig. 1) and does not depend 
upon the applied potential difference. Zero 
concentration of ions discharging near the 
anode surface corresponds to the regime of the 
so-called limiting flux, i.e. the condition C, z 0 
is fulfilled. The ECL-solution composition and 
designation of each chemical are given in 
Table 1. 

In all our experiments, the limiting current 
and at the same time maximum glow intensity 
are achieved when the potential difference 
between anode and non-Newtonian ECL-solu- 
tion is approximately 0.63 V (Figs. 1 and 2). 

06- 

0.2 - 

0 02 0.4 06 0.8 

FIG. 2. Glow intensity as function of the potential difference 
between anode and solution 

l_CCMC = 0%; h, = 0; U, = 0.17 m/set; x = 2.2 cm; 
C uzol = 0.6 ml/lit 

2-F = O%;h, = 0,7cm;U, = 0,17m/sec;: = 1.4cm; 
u202 = 0.6 ml/lit 

3-c,, = l%;h,=2~3cm;U,=0~17m/sec;.u=3cm; 
C uzo2 = 0.9 ml/lit 

6-C,,, = 0.25%; h, = 2.3 cm; U, = 0.17 m/set; x = 5 
cm; Cn,,, = 0.9 ml/lit 

5-c,,, = 0.5%; h, = 2.3 cm; U, = 0.5 m/set; 
x = 3 cm; C,,,, = 0.9 ml/lit. 
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(b) Opticu~ properties 
ECL-solution turbidity and its refraction 

increase with concentration of thickening non- 
Newtonian additive. Consequently, the fraction 
of light absorption in the total light flux re- 
ceived by a photodevice (photomultiplier, photo- 
element, etc.) does not remain constant and 
varies together with the polymer content from 
one experiment to another. In order that the 
influence of the variable refraction and light 
absorption upon “useful” photocurrent be 
eliminated, we have found in separate experi- 
ments the concentration dependence of the 
refraction factor and relative attenuation of 
the light beam passing through the Newtonian 
ECL-solution and through the same solution 
with a high-molecular additive. 

The data of the measurement of the trans- 
mission coefficient are presented in Fig. 3 and 
are approximated by the equation 

T;i = 1+24C (57) 

where C is measured in g/cm3. 

Thus, up to the q~tities C = 2% the 
absorption of the passing light is directly 
proportional to the Na-CMC concentration. 

The refraction coefficient linearly depends 
upon Na-CMC concentration in the solution 

N = 1.3413 + 0.124C. (58) 

The majority of the modern experimental 
methods for determining the diffusion coefficient 
D is based on measuring the concentration 
gradient of the solution under consideration 
with the help of optical methods. In particular, 
we use the dependence of the refraction index 
N of the solution upon the concentration C 
of a diffusing substance 

8N 
-gj = Vl (59) 

where v1 is the increment of refraction index. 
In a case of one-dimensional unsteady 

diffusion the concentration field at the time 
moment t is ~haracter~ed by a distribution 

C=C, +q(l +$/e-Yz dy) (60) 

where 

X 
= - and AC = CZ - C,. 

y 2Jw 
From equality (60) the value of D is simply 
determined by the experimental curve c(x). 
However, for this purpose it is more convenient 
to use not the concentration itself but its 
gradient dC/dx (Boltzmann’s method). The 
calculation is made by the formula 

0 0.4 08 1.2 l-6 2.0 

Cxl@ g/cm3 

FXG. 3. ECL-solution properties versus polymer additive 
where o2 = 2Dt. 

concentration In the refra~tomet~c method the gradient of 
l--change in diffusion coeffkient; 2--change in “flow the refraction index dN/dx is measured, and 

index”; 3-change in transmission coeflicient ; 4-change 
in refraction coeffkient; S--change in index of liquid 

with the help of it (since dN/dx = v (dC/dx) the 

consistency. value of D is calculated from relation (62) [13] 
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dN N - No 
-E------_-e 

-xz,4Dt 

dx 2J(rcDt) . 
(62) 

In refractional diffusometers the initial clear 
interface ofliquids being in contact is established 
by means of depositing the lighter liquid 
(solution-solvent) on the more heavy one or 
vice versa. The light beam passing through a 
medium with a non-zero gradient of the re- 
fraction index deflects to the side of an increase 
in the refraction index and follows the curve, 
whose radius of curvature R is inversely pro- 
portional to the concentration gradient dC/dx 
at this point [14]. Consequently, the cuvette, 
along which there exists a change in the medium 
refraction index N determined by equation (60) 
(C is proportional to N) is in its optical properties 
similar to a non-uniform material prism having 
a refraction angle different from the points 
on the x-axis and proportional to the gradient 
dN/dx determined by equation (62). The small 
angle of the beam deviation in the cuvette is 
equal to GdN/dx where 6 is the cuvette size 
with respect to the direction of the incident 
light beam. Substituting the value of equation 
(62) for dN/dx, we have the relation 

a=6 
N - N, 

2 J(7rDt) 
e- x=/4m 

(63) 

The maximum beam deviation 
x = 0, i.e. 

a 6 
N - N, 

max = 2 J(7rDt)’ 

takes place at 

(64) 

Thus, the value of the diffusion coefficient 
determined for two different time moments is 
equal to 

(65) 

To find the value of D by formula (65), it is 
sufficient to have two pairs of values tl, ai and 
t,, a2, However, to achieve greater accuracy, it 
is necessary to make more measurements. When 

calculating D, to avoid a systematic error, 
different a1 and a2 (but not the relations of 
different a2 to one and the same aI) are com- 
bined. To decrease the relative error in the 
calculations, values of a, not very close to each 
other are used. 

The results obtained by formula (65) are 
given in Fig. 3. The diffusion coefficient of ions 
of the active electrolyte (H,O,) for the ECL- 
system under consideration increases with the 
polymer concentration up to CNa_CMC = 0.5 per 
cent where a maximum is achieved. With a 
further increase in the polymer concentration, 
a monotonous decrease in D is observed. 

It is interesting to compare our data with the 
results calculated by the method of the polariza- 
tion interferometer of two solutions being in 
contact. The experiments based on this method 
[15] reveal sharp changes in the diffusion 
coefficient of chain macromolecules in a non- 
ideal solvent with an increase in the solution 
concentration. Bisschops’experiments [16] with 
a polyacrylonitriledimethylformamide system 
have revealed also a non-monotonous change 
of the diffusion coefficient with an increase in 
the polymer concentration. The same effect 
is also observed in other polymer-solvent 
systems. 

(d) Rheological systems 
The real liquids with a non-linear curve of 

shear flow, for which the shear velocity at 
each point is uniquely related to tangential 
shear stress at the same point, may be described 
by the rheological constitutive equation (one- 
dimensional conditions) 

; = f(r). (66) 

We have determined rheological charac- 
teristics of non-Newtonian ECL-solution in a 
capillary constant-pressure viscometer by simul- 
taneous measurement of the volume velocity 
Q in tube cross-sections and of the corresponding 
longitudinal pressure drop AP at a prescribed 
length. 

At present, when treating data of capillary 
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viscosimetry the consistent rheological variables 
are widely used 

v_ 4Q _=Q. 
xR3 nd3’ 

P=R.AP dAP 
- = -. (67) 

2L 4L 

Table 1 

Substance Concentration 

1 2 - 

Notes 
~-~ 

3 

Here Q is the volume rate through a tube per 
second ; AP is the pressure drop of stabilized 
flow over the tube length L. 

*%- 

IIll I I I I I I I I I I 
0 020~4060~8tOl2 1416 IB8022242628303234363645 

Zxf@ 

Na-CMC (0.1-2) % Pseudopiasti~ and viscoelastic 
non-Newtonian thickening 
additive 

FIG. 4. Consistent curves of Na-CMC solution flows Table 2 
l-C,,, = 0.1% ; z--c,,, = 0.25 “/, : 
3-c,, = 0.5 %; 4---“CCMC = 0.75 % ; 
5---c,,, = 1% ; 6--c,, = 1.5 %. 

H,O - 

KC1 7456 g/lit 

NaOH 0.87 g/lit 

Solvent 

Main electroIJrte (phone) 

Regulator pH (luminol dis- 
solves and luminiscences only 
in alkali solution at pH > 8.5) 

Hz% 0.6 ml/lit Oxidiser (active electrolyte), 
(30 ‘A solution) its concentration greatly in- 

fluences the flow intensity 

0.9 mliht For non-Newtonian solutions 
(30 y0 solution) 

Luminoi 0.15 g/lit Chemiiuminiscent substance 

K. IO3 K.p_‘. lo6 
(n sec”/m2) (m2/sec2-“) 

I 1 
4.1 4.3 

FIG. 5. Curves of Na-CMC solution flows 
I-C,, = 0.1% ; 2--C,, =L 0.25 % ; 
3---c,, = 0.5 % ; 4-c,Mc = 0.75 2; 
s-c,,, = 1% ; 6-CCMC = 1.5 %. 

I:; O 0901 0.99 1 

(3) 0.0025 0.98 
(4) OQOS 0.96 
(5) oGJ75 0.94 
(6) 0.01 0.88 
(7) 0,015 0.83 

..__ 

0.93 0.92 
1.172 1.12 
2,384 2.28 
5.355 5.124 

12.13 11.61 
29.32 28,057 
99.3 95.04 

_= 

Consistent values of the mean gradient of the 
shear velocity I/and the tangential shear stress 
P were calculated on the basis of the measure- 
ments of Q and AP by formula (67). In Figs. 4 and 
5 are presented the consistent curves of flow of 
aqueous Na-CMC solutions with ECL-addi- 
tives in ordinary and logarithmic co-ordinates. 
As it is seen from the plot in double logarithmic 
co-ordinates within more than one decimal 
order (lo2 + 5. 103) see-’ the relation P(V) 
appears to be linear with the tangent of the 
angle of inclination between zero and unity. 
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09 

FIG. 6. Comparison of the approximate and exact values of 
(‘“f 

the formparameter u = ~q 
i 1 

o_o 

l-exact solution of slnilar problem 
2-first approximation 

3--second approximation 

4--third approximation 

1 3,‘I +n 

#) = 
i I 

1q1 - n) + 1 
fjfF(Q) 1 + __~_ 

1 

-4+(1 - n)(186 - 14%) 
+. ..__ -_- 

1620 Ii 

Thus, the rheological behaviour of the ECL- 
solution with polymer additives has distinct 
pseudoplastic character and is well described 
by the law (I). Table 2 comprises values of the 
rheological parameters n and K. 

The relation between the index of liquid 
consistency and Na-CMC concentration is 

k = e315.65c-6-a6 
(68) 

The dependence of consistency K upon CMC- 
polymer concentration appears to be linear 

(Fig. 3) and is approximated by the equation 

n = 1 - 12c. (69) 

In equations (68) and (69) C is measured in 
g/cm3. 
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Abstract-The results of the analytical and experimental study of mass transfer in a boundary layer of an 
elastic-viscous non-Newtonian fluid are reported. 

Part I includes the results of the analytical study of mass transfer in longitudinal flow along a plate. 
The methods of the experimental study are also described. Also presented are results on diffusion, optical 

and rheological properties of an electrochemiluminiscence solution (ECL) with Na-CMC additives. 

Rhsumk-Les rtsultats de I’etude theorique et exptrimentale du transport de masse sont donnts pour une 
couche limite d’un fluide non-newtonien elasti~o-v~squeux. 
La premiere partie comprend ies resultats de l’etude thCorique du transport de masse dans l’ecoulement 
longitudinal le long d’une plaque. Les methodes de l’etude experimentale sont galement d&rites. On 
presente aussi les resultats des proprietes de diffusion, optiques et rheolpgiques d’une solution Clectro- 

chimiluminescente (ECL) avec des additifs de Na-CMC. 

Zusammenfassung-Es wird uber eine analytische und experimentelle Untersuchung des Stofhibergangs 
in der Grenzschicht einer elastisch-z&hen Nicht-Newtonschen Fltissigkeit berichtet. 

Der Teil I behandelt die Ergebnisse der analytischen Untersuchung des Stofftransports in der Striimung 
fangs einer Platte. Die Versuchsmethoden werden ebenfalls beschrieben. Weiterhin werden Ergebnisse 
geliefert hir die Diffusion und optische und rheologis~he Eigenschaften einer elektrochemischen Lumines- 

zenzliisung (ECL) mit Na-CMC-Zusltzen. 


